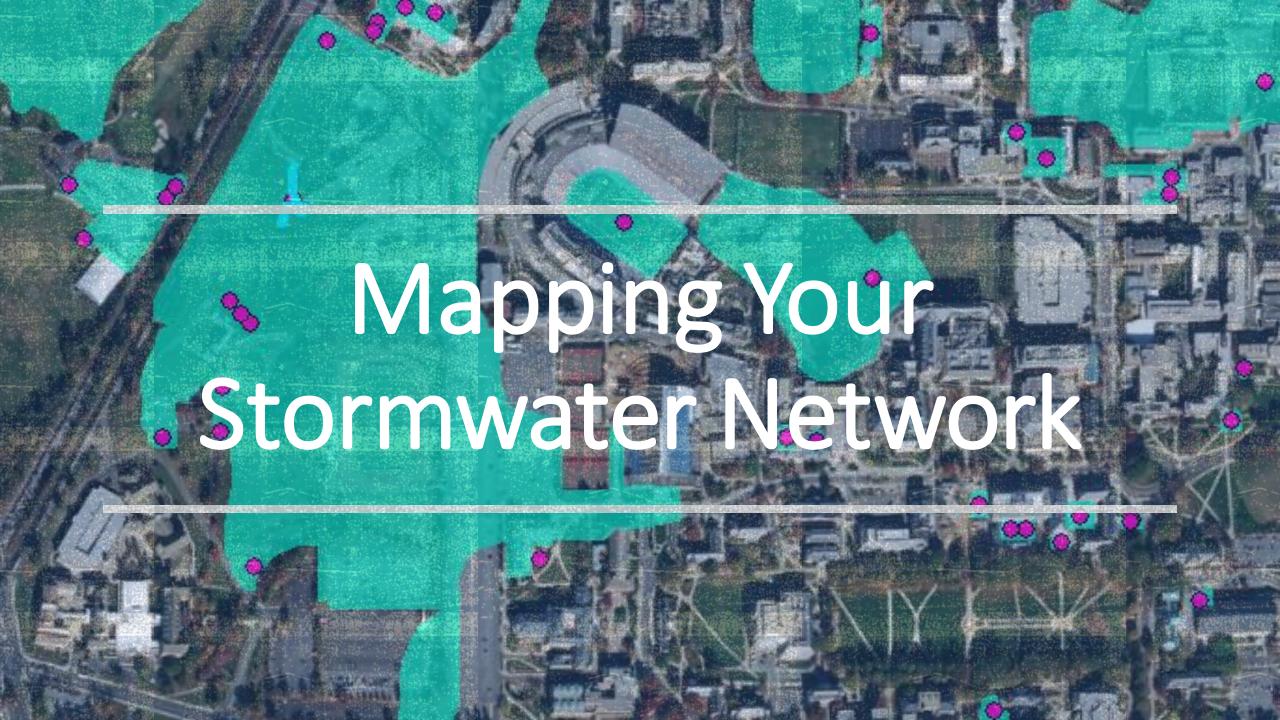
University System of Maryland MS4 Permit Workshop

Michael Herzberger, John Groeger Theresa Foye, Sean Lavallee, Jen Wijetunga

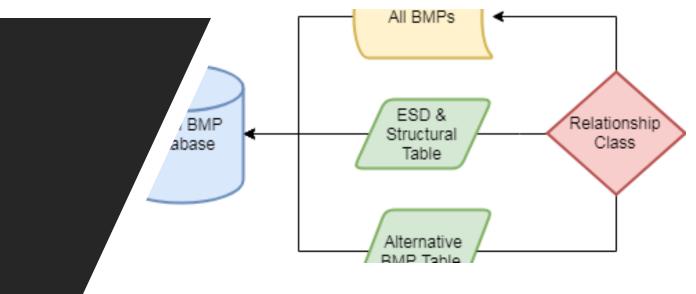
September 20, 2018



Minimum Control Measures

- 1. Personnel or Public Education and Outreach
- 2. Public Involvement and Participation
- 3. Illicit Discharge Detection and Elimination
- 4. Construction Site Stormwater Runoff Control
- 5. Post Construction Stormwater Management
- 6. Pollution Prevention and Good Housekeeping

Review of Existing Data


- Reviewing existing data and organizing to assist with a smooth and painless migration to database format
- Data that will get you started includes and not limited to:
 - CAD datasets,
 - Engineering Plans
 - Existing GIS data
 - Tabular data
 - Permits
 - Other Approved Records of Information (i.e studies or paper forms).

Development of Stormwater Network and Urban BMP Database

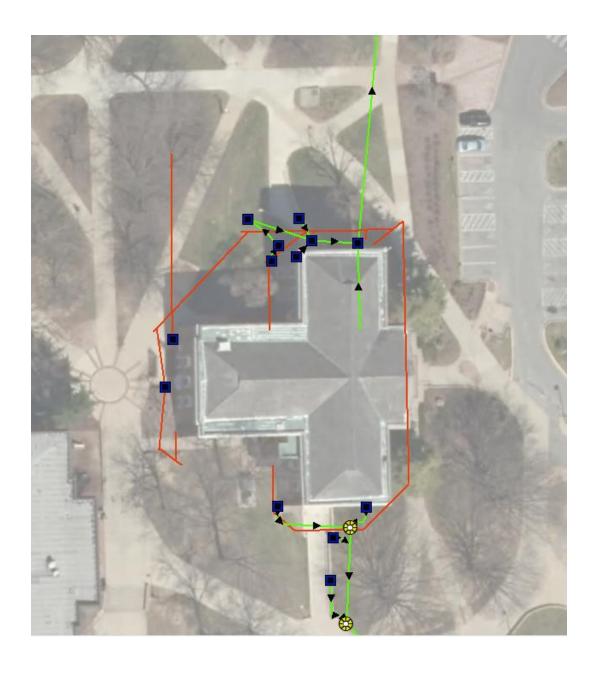
44.29

- Developing the schema or framework for Stormwater Network
- Populating data into the Urban BMP Database (Excel sheet and or GIS)
 - Phase II MS4 Excel BMP Template (May 2018) (Link)
 - Phase II MS4 Database Guidance (May 2018) (Link)

nents (Sample Input Table)

red of all structural, ESD and alternative Best Management Practices (BMPs)

	rea or an stractural, 255 and arternative best management reactions (51111.5)										
	EAST	PERMIT_NUM	LOCAL_BMP_ID	BMP_NAME	BMP_CLASS	В					
_0	333.6501	13-SF_5501	SWM001	Building A - Bioretention	E	N					
,11	315.6953	13-SF_5501	SWM002	Stormpond #1	S	P١					
102	498.1268	13-SF_5501	SWM003	Sand Filter #3	S	FI					
102	2566.4318	13-SF_5501	SWM004	Stone Building Parking lot rem	Α	IN					
102	2557.0082	13-SF_5501	SWM005	Bay Park Living Shoreline	Α	SH					
102	549.7904	13-SF_5501	SWM006	Wet Pond - Everton Hall	S	W					
102	2566.4318	13-SF_5501	SWM007	Annual Sweeping Program	Α	V					
102	2557.0082	13-SF_5501	SWM008	Earth Day Planting	Α	FF					

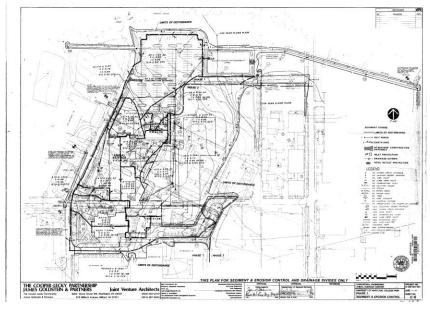

Migration of Data Sources

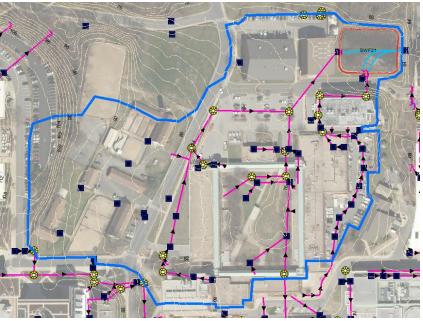
- Transfer of existing data into the database
 - Can be in the form of digitization, data entry, or data migration from CAD to GIS
- Noting which BMPs have associated plans, computations, results, signatures is helpful for the baseline analysis.

Reviewing Existing Data Developing the Stormwater Network and Urban BMP data

Migration of Data Sources

The
Beginning
of a
Beautiful
Thing

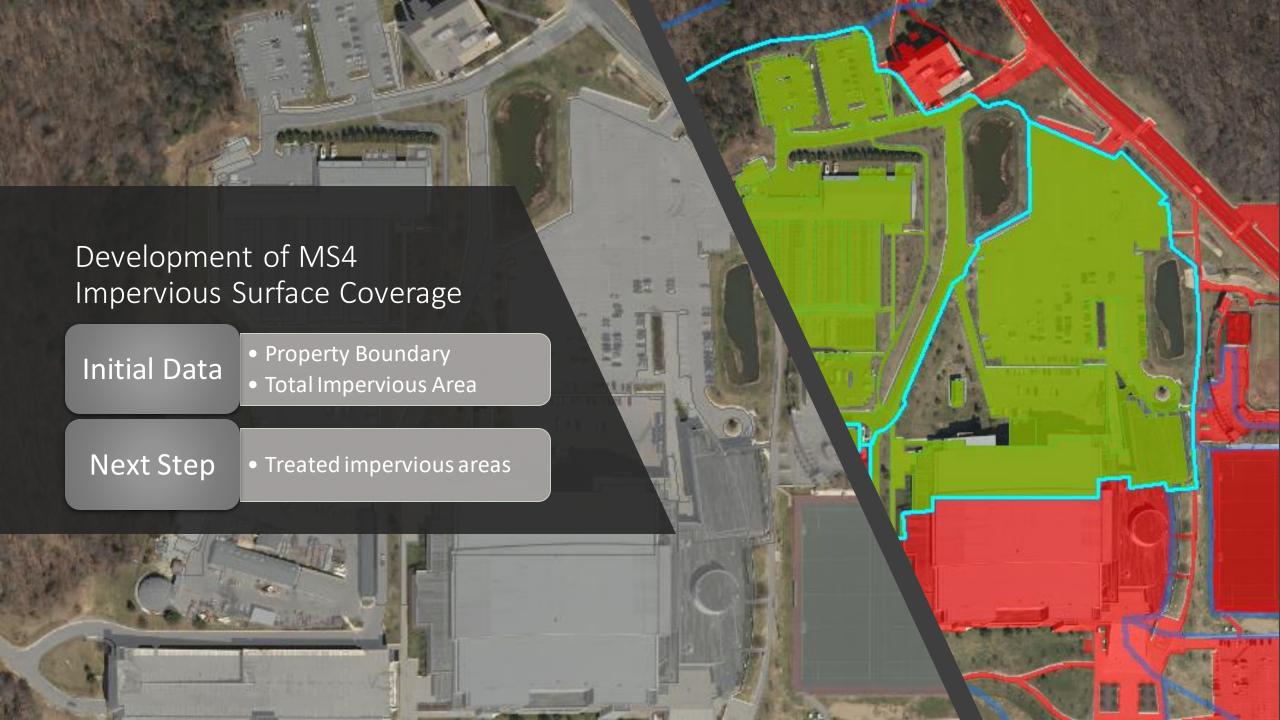

Verifying and Assessing the Stormwater network


Field verifying existence of stormwater point features.

Assessing conditions of stormwater point features (Manholes, Outfalls, Inlets, etc.)

Verifying flow of stormwater network

Confirmed data available for developing drainage areas, IDDE, BMP inspections, design & construction, or emergency repairs



Development of Drainage Areas

Developing the drainage area is essential to determining the drainage to your outfalls, stormwater facilities, inspections, baseline, and overall stormwater plan.

Using previous documentation and existing data will assist in this process

Determining the Baseline

- The Baseline Impervious
 Area Assessment will
 determine the total
 impervious surface area
 required for restoration
 within each campus
 property.
- Assessment is made on a chosen baseline year.
- Identify restoration projects already completed since 2006, and consider those in the analysis.

- Determine the total impervious area within campus property.
- 2. Determine how much of that impervious area is treated by existing BMP's, and the level treatment provided by Era.
- 3. Subtract the equivalent treated acres from the total impervious area.
- 4. Subtract areas regulated by an industrial permit or owned by others.
- 5. Multiply by 20% to arrive at Restoration Goal.

Water Quality for Existing BMP Credit

Era Definitions Based on permitted date, not built date!

- Prior to 1985 no WQ
- 1985-2002-1/2" WQ
- 2002-2010-1" WQ **
- Post 2010 ESD implemented**

** WQ is considered fully treated

Restoration Project Planning

- Perform a watershed assessment to identify existing problems, and potential restoration opportunities
 - Identify potential sources of pollutants
 - Field recon to identify erosion issues
 - Known flooding issues/other
 - Potential educational opportunities
- Conduct a feasibility study of projects. Prepare initial costs estimates, and rank and prioritize restoration projects based on a cost per equivalent impervious acres of restoration.
- Budget improvements.

What's needed for crediting existing BMPs?

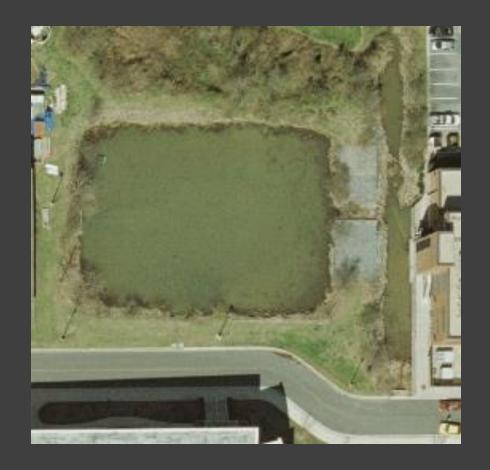
As-Builts

- A record of what was built.
- Confirm actual WQ treatment amount.
- What if as-builts cannot be found?

Existing BMPs - Inspection

- Inflow
- Ponding
- Invasives
- Structural

BMP INSPECTION REPORT


	DMFIN			
INSPECTION/ INVEST	TIGATION TYPE	Date: 8/22/1	7 Time: 10:15 am	
INSPECTOR'S NAME:				
Ø INITIAL □	FOLLOW-UP	ROUTINE COMP	PLAINT I OTHER	
SITE LOCATION INFO	ORMATION AND OWN	ER		
STREET ADDRESS: 3151	Presidential Golf Drive	CITY: Upper Mariboro	STATE: ZIP: 20774	
OWNER/ LESSEE:				
BMP TYPE		10		
SWM Pond	Filtering Practices	Infiltraco	Hydrodynamic Structure	
Detention Structure (Dry Pond)	Dry Swale	and y	☐ Bay Saver	
Retention Pond (Wet Pond)	₽ Bio-retenfon	C. dasin	Oil grit Separator	
Extended Detention Structure Dry	D Pour Step O	Complete Exfiltration	Stormceptor	
Extended Detention Structure Wet	D Landscape	☐ Infiltration Trench Partial Exfiltration	Underground Storage	
Forebay	□ Sand Filter	☐ Infiltration Trench Water Quality Exfiltration	Wetlands	
	C) Grasa Swale	Other	☐ Artificial Wetlands	
_	□ Vegetated Buffer	☐ Other	☐ Shallow Marsh	
INSPECTION RESUL	rS .			

Existing BMPs

Example Inspection

Existing BMPs

Maintenance

Retrofit Opportunities



Favorite BMP

- Submerged Gravel Wetland
- High groundwater
- Large drainage area

Souces of Funding

- Capital Funding
- Pooled Resources Partnerships
- Grant Opportunities

Grants!

- Design & Implementation funding available
- NFWF
 - Up to \$1M
- Chesapeake Bay Trust
 - Up to \$100,000
- DNR Trust Fund
 - Up to \$1M

Questions? Reach out! 410-729-8200

Michael Herzberger, GISP, CFM, Section Chief, Geospatial and Engineering Services, mherz@menv.com

John Groeger, P.E., Section Chief, Construction Services, igroeger@menv.com

Theresa Foye, GISP, GIS Manager, tfoye@menv.com

Sean Lavallee, GIS Lead, slavallee@menv.com

Jen Wijetunga, P.E., CPSWQ, Senior Engineer, jwijet@menv.com