USM Project
Construction Costs:
Challenges and Solutions

USM Office of Capital Planning
USM Office of Procurement
UMCP Project Service Center
UMB Project Service Center

Board of Regents Finance Committee
March 26, 2020

Presentation In Two Parts:

1. What drives the cost of USM projects?
2. What solutions can help reduce those costs?
1. What drives the cost of USM projects?

- General cost implications inherent in all Maryland higher education projects
- Market-driven impacts on costs

What drives the cost of USM projects?

General: **Regulatory**

- USM Policies and State Statutes and Regulations
- Board of Public Works
- Buy American Steel
- Prevailing Wage
- Minority Business Enterprise requirements
- Cash Flow Requirements
- Bonds and Insurance
- Green Building Certification
- Maryland MDE and DNR Requirements
- Local Jurisdictions
- Light Pollution, trespass and efficiency standards
- Historic Preservation
- Public Art
What drives the cost of USM projects?

General: **Logistics**

- 24 hours/day schedules
- Timing around academic calendars
- Need for continuous operation
- Limits to parking and staging—particularly in urban areas

What drives the cost of USM projects?

General: **Scope**

- Demolition and abatement costs
- Central Utility Plant upgrades
- New utility connections
- Extensive site work outside the project limits
- Phasing or enabling work
- Public safety issues, lighting, security, etc.
- Higher levels of system reliability and redundancy
What drives the cost of USM projects?

General: Comparability

- Higher Ed projects lack good comparable examples in private sector
 - (e.g., Research facilities, teaching laboratories)
- Valid per SF cost comparisons difficult
- Examples:
 - Tenant fit-out (developer building) not included in per SF costs
 - Standards of construction
 - Highly efficient, flexible configurations
 - Structurally to 100 years (with multiple renovations over time)

What drives the cost of USM projects?

Market: Materials Costs

- Materials costs up to 40% of budget
- Costs fluctuate based on events, market
- Possible factors affecting market (examples)
 - Tariffs (and talk of tariffs)
 - Hurricane rebuilding (US and Caribbean)
 - Midwest flooding
 - California fires
 - Oil prices (plastics, transport)
 - Recent bidding resulted in 20-30% increase in metals
 - Drywall and lumber costs are higher
What drives the cost of USM projects?

Market: Labor Costs

- **Market Capacity is the biggest driver affecting project costs**
- 60-70% of project costs related to labor
- Trade workers in regional market peaked in 2006 at 195K, now at 163K (same as 2001)
- Market Capacity in DC is $26.6B (5th largest in the US; Balt $8.3B)
- 80% of the construction firms expect to have difficulty filling positions in the next 12-14 months
- Contractors/subcontractors can be selective
 - Many choose to avoid “risky” projects
 - Or they build-in higher costs to account for those risks
- High demand + low supply = higher wages—particularly MEP

[Construction Managers Association of America, January 2020]

What drives the cost of USM projects?

Market: Labor Costs

- Increases on our projects have ranged from 17% to 37% over original cost estimates because subcontractors can “pick and choose”
 - Example: UMES Pharmacy—Two of four mechanical bidders dropped out when State announced Bay Bridge repairs
- Major Regional/DC development, also VA, Arlington and Dulles Airport; and Purple Line
 - Example: One data center utilized 1,300 workers daily
- Lowest unemployment in construction in over a decade
 - Example (UMCP): Builder could only field 30 of 60 carpenters needed
 - Example (UMB): Where weather delays could be mitigated with two shifts, worker shortages prohibited it
- Many large subcontractors in critical specialties have closed
2. What solutions can help reduce costs?

- Effective project delivery
- Innovative technology
- Focused goals & processes
- Improved data sharing

What solutions can help reduce costs?

- Selecting the most effective project delivery method
Selecting most effective project delivery methods

CONSTRUCTION MANAGER AT-RISK

- **OWNER**
- **ARCHITECT**
- **CM AT-RISK**
- **CONSULTANT**
- **ENGINEER**
- **SUB-CONTRACTORS**
- **SUPPLIERS**

Construction Manager is engaged during pre-construction activities.

The advantages of “CMAR”

- A "best value" method that allows for owner control
- Best of both worlds: fixed price and cost-plus contractors
 - If trade bid comes in low, we benefit
 - If trade bid comes in high, the CM is at risk
- High degree of cost control (two estimators)
- More forgiving of unforeseen conditions
- CMAR paid with fee, not motivated to generate change orders; and a good CM can typically save costs equal to their fee
- Project duration can be shorter because the actual construction can begin before the entire design has been completed
- Design fees are kept to a minimum
- Quality is stressed over lowest price
 - Option to seek the best over the cheapest if in best interest of owner
- CM method lends itself to other benefits (e.g., fast tracking)
What solutions can help reduce costs?

- Adopting creative construction techniques where they add value

Advantages of Modular Construction

- Speed of build
- Off-site construction
- Elimination of Weather Delays
- Minimal impact on business/operations
- Eco-friendly materials
- Cost-effective
- Flexibility
- Less Material Waste
- Strength
- Air Quality
- Safety
Modular construction timeline

UMBC “Pilot Project”
- Permanent Modular Construction
- Tight timeframe for campus (August 2021 operation)
- Anticipate cost savings as well
- Will monitor and report progress/results

What solutions can help reduce costs?

- Focused goals & processes
What solutions can help reduce costs?

- Improved data sharing & coordination

Conclusions & Discussion